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Optimal Acquisition Quantities in Remanufacturing
with Condition Uncertainty

The condition of the used products acquired by remanufacturing firms often varies widely. A

firm can manage this variation by acquiring a quantity of used items that exceeds demand,

enabling it to remanufacture a subset of the acquired items in the best condition. As more

excess items are acquired, the firm can increase its selectivity and lower its remanufacturing

costs. In this paper, we examine the tradeoff of acquisition and scrapping costs versus

remanufacturing costs when used product condition is widely varying and uncertain. We

derive acquisition quantities that minimize total expected costs for several representations

of condition variability and remanufacturing cost structures. We find that, when costs are

linear, the optimal acquisition quantity has a closed form and increases with the square root of

the degree of condition variability. Our models are based on experience with remanufacturers

of cell phones and imaging supplies, and application of our results is illustrated using example

data from industry.
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1. Introduction

The inherent variation in the condition of used products presents a significant challenge

for remanufacturing firms. Faced with a given demand, a remanufacturer can manage this

variation and the cost of remanufacturing through the quantity of used items it acquires ex-

ternally. As the number of excess items acquired is increased, the firm can be more selective

and remanufacture only those items that are in the best condition. Thus, acquisition quantity

is a key managerial decision for remanufacturers that has a direct impact on unit remanufac-

turing costs. The determination of an optimal acquisition quantity is fairly straightforward

when the distribution of item conditions within any lot is known with certainty before the

lot size is determined. However, there is likely to be some uncertainty regarding the actual

conditions of the used products to be acquired. In this research we derive optimal acquisition

quantities under condition uncertainty for several remanufacturing contexts. Our work is re-

lated both to the growing research area of remanufacturing and closed-loop supply chains as

well as lot sizing with uncertainty. Below, we briefly review the literature in these areas and

define our contribution to each.

The management of remanufacturing has received considerable attention from researchers

in recent years. For a thorough review of the academic work in this area, we refer the reader

to Souza (2008) and Atasu et al. (2008). While the variability of used product condition

has been well documented (Bloemhof-Ruwaard et al. 1999, Guide and Jayaraman 2000,

Fleischmann et al. 2000, Toktay et al. 2000), the impact of condition variability on used

product acquisition decisions – an area identified by Guide et al. (2003) as under-treated

from an academic perspective – has only recently begun to receive attention from the research

community. Aras et al. (2004) was the first analytical study to explicitly model quality cate-

gorization of used items, using the context of a hybrid manufacturing/remanufacturing firm.

Several models have examined the acquisition decision when used product condition vari-

ability is fully captured by two categories – remanfacturable or not (Zikopoulos and Tagaras

2007, 2008). Galbreth and Blackburn (2006) consider a range of remanufacturable condi-

tions, but their model assumes that the condition distribution of an acquired lot is known

with certainty. In this paper, we model acquisition decisions when multiple remanufacturable

conditions are possible and the condition of each acquired item is uncertain. Our models

provide results that are relevant for remanufacturing practice, where condition is likely to

be both widely varying and uncertain.
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In deriving optimal acquisition quantities, our work is related to the literature on optimal

lot sizes for a single production run when there are random reject rates (e.g. Levitan 1960,

Wein 1992, Grosfield-Nir and Gerchak 1996, Nandakumar and Rummel 1998). For detailed

discussions and reviews of lot sizing models of this type, we refer the reader to Yano and Lee

(1995) and Grosfield-Nir and Gerchak (2004). The important difference between our work

and these models is that, in remanufacturing, the randomness occurs in the condition of the

raw materials (used items), not the production process. Since used items can be inspected at

the time of acquisition and processed in order of condition, the average unit remanufacuring

cost of the items processed to meet a given demand is a function of the quantity of used items

acquired, with higher acquisition quantities yielding a lower expected remanufacturing cost.

This remanufacturing-specific context requires a new formulation of the lot sizing problem.

The remainder of this paper is organized as follows. In Section 2 we present an overview

of our model and derive a simple baseline solution for the case where product condition is

defined by a continuum. In Section 3 we add condition uncertainty to this model, deriving

results for both linear and nonlinear cost functions. Section 4 examines the case where

condition is best captured using discrete categories as opposed to a continuous function. We

conclude in Section 5 with a discussion of key results and the sensitivity of the model to

parametric changes.

2. Model Overview

We motivate our analysis using our experiences with CertiCell LLC, an independent cell

phone remanufacturer. Although we use this firm as our data source, our models and results

are applicable across a variety of other remanufacturing contexts, including large segments

of the remanufacturing industry such as toner cartridges and power tools (toner cartridges

alone account for around $2.5B in annual revenues (Hauser and Lund 2003)). As with many

remanufacturable goods, an active collection/broker community exists for used cell phones,

and independent firms can acquire used items on the open market as needed, allowing timing

and quantity of used item inflow to be fully controlled. In this paper we develop models

that capture the tradeoff between acquisition quantity and remanufacturing cost at this

type of firm, and the motivating example of CertiCell provides us with data to which these

models can be applied. Specifically, CertiCell provided data on actual acquisition costs, as

well as estimated remanufacturing costs for various phone models processed (Elliott 2008).
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Condition of used items can be highly variable – a used cell phone could have any combination

of a wide array of potential remanufacturing needs (antenna, screen, microphone, speaker,

faceplate, etc.). In some cases, these conditions can be captured with a few discrete condition

categories. In other cases, the combinations of remanufacturing needs are so numerous that

the range of possible conditions, while technically a discrete set, is closely approximated by

a continuum. Our initial focus in this paper is on the continuous condition case, and we

develop a model for discrete condition categories in Section 4.

Our models are applicable for firms that remanufacture to order – demand takes the form

of a specific, known production target (or, equivalently, there is no forecast error). Examples

of this context include a toner cartridge remanufacturer that produces private label cartridges

based on orders from an office supply store or a cell phone remanufacturer that fulfills

specific orders from a phone insurance provider. For many remanufactured goods, especially

electronic items, prices fall rapidly, and the high rate of obsolescence means that there is

little interest in holding inventory of remanufacturable products, nor is there a guarantee that

more used items will be available at a later date. Thus, items are rarely remanufactured

to stock, and we can realistically limit our analysis to a single-period model. We also

assume that shortages are disallowed, reflecting the situation where a firm loses considerable

goodwill if demand is not satisfied in full (and, if supplying a large retail operation, risks

being eliminated as a preferred supplier).

We consider the problem of a remanufacturer who, facing a single demand D, must

decide how many used items to acquire. For example, a firm might face a demand for

500 remanufactured cell phones. To avoid shortages, at least 500 used phones must be

acquired. Given condition variability, acquiring additional phones beyond the 500 needed

enables the remanufacturer to meet demand without having to remanufacture those items

that are in the worst condition. Similar to Ferguson et al. (2009), we model the condition λ

of each used item as a real number λ ∈ [0, 1], the value of which is a random variable with

cumulative distribution G (λ) and density function g (λ). In our model, λ = 0 represents

the best possible condition and λ = 1 the worst possible condition (remanufacturing cost is

an increasing function of λ). The decision variable for the remanufacturer is the quantity

of used items acquired Q, where Q ≥ D. All Q items are inspected and rank ordered by

condition, allowing the D items in the best condition to be remanufactured. Unit acquisition

and inspection costs are denoted u, and unit scrap cost, which captures both the direct and

indirect (environmental) costs of scrapping, is denoted s. We assume that all acquired items
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Table 1: Notation Summary
Parameters
D demand for remanufactured items
λ used item condition
G (λ) condition cdf
k index for ordered item condition within an acquired lot

(k = 1 → best condition; k = Q → worst condition )
u unit acquisition and inspection costs
s unit scrap cost
a fixed portion of unit remanufacturing cost
c variable (condition-dependent) portion of unit remanufacturing cost
Decision Variable
Q quantity of used items acquired

are inspected so that they can be processed according to their unique remanufacturing needs.

We also assume perfect testing and no capacity constraints (similar assumptions are made in

both Guide et al. (2003) and Galbreth and Blackburn (2006)). Our notation is summarized

in Table 1.

Remanufacturers are frequently unable to obtain specific information regarding the exact

distribution of the condition of used items prior to acquisition, but condition typically varies

widely and is not generally characterized by a specific distribution. A diffuse distribution

such as the uniform captures the high degree of condition uncertainty while providing ana-

lytical tractability. In this paper, we assume that g (λ) is a uniform distribution. Uniformly

distributed condition has also been assumed in other remanufacturing models (Imtanavanich

and Gupta 2005).

To establish a baseline solution, we make two simplifying assumptions, both of which are

relaxed in subsequent sections. First, we assume that, in each acquired lot, item condition

is distributed exactly according to g (λ). In effect, this assumption removes all uncertainty

regarding the condition of acquired items, capturing only the variability of condition. Given

this assumption, when Q items are acquired, the conditions of the best D items are uniformly

distributed over [0, D
Q

]. Second, we assume that remanufacturing cost is a linear function

of condition a + cλ, where a is a known, fixed unit cost (for disassembly, cleaning, etc.)

and c is a variable component that depends on condition. The parameter c represents the

difference in remanufacturing cost between the best and worst condition items, i.e. the

degree of condition variability. This simplified model is equivalent to the linear acquisition

cost model in Galbreth and Blackburn (2006), which we examine for the special case of
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uniformly distributed condition to obtain a closed form solution. Total acquisition and

remanufacturing costs are as follows:

f (Q) = uQ + (Q − D) s + aD +
cD2

2Q
(1)

(1) is convex in Q, with first derivative:

f ′ (Q) = u + s − cD2

2Q2
(2)

Given (2), we have the following Observation, where the optimal value of Q is rounded to

the nearest integer by adding 0.5 and taking the floor function:

Observation 1 When the condition distribution of used items is known with certainty and

remanufacturing cost is a linear function of condition, the cost-minimizing acquisition quan-

tity Q∗ is:

Q∗ = MAX

{

D,

⌊

D

√

c

2 (u + s)
+ 0.5

⌋}

(3)

Returning to our example of a cell phone remanufacturer, consider the acquisition decision

given the following cost parameters, which are based on values from CertiCell. For one phone

model, the cost to acquire and inspect each unit is $3.00, and the variation in remanufacturing

cost between the best and worst conditions is $8.00. Scrapping costs are negligible. We can

evaluate (3) at these parameter values (u = 3, c = 8, s = 0) for a hypothetical demand

of D = 500, giving an optimal acquisition quantity Q∗ = 577. Thus, the firm minimizes

the cost to meet the demand for 500 remanufactured phones by acquiring 577 used phones,

inspecting them, and processing the 500 phones in the best condition.

The analysis above assumed a very simple situation where, although condition is variable,

its distribution is known with certainty. In the remainder of our analysis, this assumption

is relaxed.

3. The Impact of Condition Uncertainty

In this section, we explicitly consider the condition of each item to be a random variable, uni-

formly distributed on [0, 1]. Consider an acquisition lot of Q used items. Let X(1), . . . , X(Q)

denote the order statistics of the Q items, ordered by condition. Thus, the remanufacturing
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cost of the best D items is given by
D
∑

k=1

(

a + cX(k)

)

. For the uniform distribution, the kth

order statistic, X(k), has the following density function for λ:

Q

(

Q − 1
k − 1

)

λk−1 (1 − λ)Q−k ; λ ∈ [0, 1]

We rewrite the expected cost function (1) to reflect condition uncertainty as follows:

f (Q) = uQ + s (Q − D) +
D
∑

k=1



a +

1
∫

0

Q

(

Q − 1
k − 1

)

(cλ) λk−1 (1 − λ)Q−k
dλ



 (4)

And the optimal acquisition quantity is defined by the following proposition:

Proposition 1 When the condition is uncertain and remanufacturing cost is a linear func-

tion of condition, the cost-minimizing acquisition quantity Q∗ is:

Q∗ = MAX







D,









√

√

√

√

cD (D + 1)

2 (u + s)
− 0.5















(5)

Proof: See Appendix

From (5) it is clear that an increase in D will result in a proportional increase in Q∗.

In (5) we also see that the fixed portion of remanufacturing cost a is not relevant to the

acquisition quantity decision. Since a change in scrap value is equivalent to a change in

acquisition cost, we can evaluate the sensitivity of the solution to changes in (u + s) or c.

The optimal acquisition quantity Q∗ increases with the degree of condition variability c. The

intuition for this result is that as variability increases the selectivity enabled by acquiring

extra items has increasing value. Less intuitive is the magnitude of this relationship. Observe

that, for a given demand, Q∗ increases with the square root of c. Similarly, Q∗ decreases

with the square root of (u + s). These are useful guidelines for how acquisition quantities

should be adjusted in response to changes in the degree of condition variability, acquisition,

or scrap costs. For example, if the range of remanufacturing costs, c, doubles from 8 to 16,

then the amount acquired would increase by
√

2. If (u + s) doubles from 3 to 6, the amount

acquired decreases by
√

2.

From the similarity between (5) and (3), we note that, given the assumptions of uni-

form condition and linear remanufacturing costs, the optimal acquisition quantity is closely
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approximated by the formulation that ignores condition uncertainty, particularly for larger

demands. Recall that (3) assumes that the conditions of the acquired items are distributed

exactly according to expectations. As suggested by Galbreth and Blackburn (2006), this is

a reasonable assumption for larger acquisition quantities. Even for smaller demands, the

penalty for ignoring condition uncertainty is minimal. In our cell phone example (D = 500,

u = 3, c = 8, s=0), we find using (5) that the optimal value Q∗ = 577 is identical to the one

specified by the deterministic model in (3).

3.1 Results for Nonlinear Cost Functions

Of course, remanufacturing costs may not always be a linear function of condition. As

pointed out by Ferguson et al. (2009), the exact expression for cost as a function of con-

dition is difficult to estimate. In that paper the authors represent remanufacturing cost as

a general nonlinear power function of condition. We make a similar assumption, modeling

remanufacturing cost as a + cλβ, where β is the shape parameter of the cost curve. Since

costs increase as condition deteriorates, β > 0. Remanufacturing cost is convex in condition

for β > 1 and concave in condition for β < 1. A power function with β > 1 is often appropri-

ate since marginal remanufacturing costs are likely to increase as condition deteriorates. We

illustrate with a quadratic remanufacturing cost function, i.e. remanufacturing cost equals

a + cλ2. In this case, the expected total cost is:

f (Q) = uQ + s (Q − D) +
D
∑

k=1



a +

1
∫

0

Q

(

Q − 1
k − 1

)

(

cλ2
)

λk−1 (1 − λ)Q−k
dλ



 (6)

And we have the following proposition:

Proposition 2 When remanufacturing cost is a quadratic function of condition, the total

cost function is convex in Q, and Q∗ is the maximum of D and nearest integer-valued solution

to the following:

(Q + 1)2 (Q + 2)2

2Q + 3
=

cD (D + 1) (D + 2)

3 (u + s)
(7)

Proof: See Appendix
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Figure 1: Sensitivity of Q∗ to parametric changes

The solution to (7) can be computed using known algorithms for quartic functions. It

can also easily be found numerically, beginning with Q = D and incrementing Q until the

best integer solution is found. Returning to the cell phone example of the previous sections,

if marginal remanufacturing costs increase with condition, making this cost curve a more

accurate reflection of reality, then with (D = 500, u = 3, c = 8, s=0) the optimal acquisition

quantity can be calculated as Q∗ = 605.

In the case of quadratic costs, Q∗ is clearly increasing in D. For a given D value, Q∗

appears to be a concave increasing function of c
u+s

, the ratio of the remanufacturing cost

range to the acquisition plus scrap cost (see Figure 1). In fact, for large D, (7) is closely

approximated by the expression 1
2
Q3 = 1

3
c

(u+s)
D3, leading to the following observation:

Observation 2 When remanufacturing cost is a quadratic function of condition, for large

values of D the ratio Q∗

D
is approximated by 3

√

2
3

c
(u+s)

.

10



4. A Discrete Condition Model

In this section we consider the case where condition variability can be captured by a discrete

set of condition categories. For example, for some cell phones and other electronics, a single

component (in CertiCell’s case, often the cell phone’s LCD screen) may account for such

a large portion of the cost variation that a two-category sorting system suffices. A similar

system is appropriate for some simple toner cartridge models as well, where condition is

defined based on whether the item has been previously remanufactured. In addition to

being common in practice, a two-category system has been studied in prior research (Aras

et al. 2004, Zikopoulos and Tagaras 2007, Zikopoulos and Tagaras 2008). We also focus

on the case of two condition categories, making our model similar to the one examined

by Zikopoulos and Tagaras (2007), except that we allow for the remanufacturing of both

categories of items, at different costs (“low cost” and “high cost”).

Given two condition categories for remanufacturable items, in which each item has a

probability α of being low cost (independent of the others), the number of low cost items in

an acquired batch is binomially distributed. In a traditional manufacturing setting, the bino-

mial distribution is appropriate in situations where the production of any individual item is

independent of all other items (Yano and Lee 1995, Barad and Braha 1996, Grosfeld-Nir and

Gerchak 2004). This is also the case in remanufacturing, since remanufactured items are col-

lected in lots that typically have little relationship to their original manufacturing sequence.

Karaer and Lee (2007) established that the binomial distribution is a valid representation of

uncertainty in the fraction of used items that fall into different condition categories.

By taking {u, α} as exogenous, we do not explicitly model the case in which α is a

function of the acquisition price, as in Guide et al. (2003). This reflects our experience with

firms that acquire ungraded lots of items from brokers. However, if graded items are offered

at different prices, a remanufacturer can use our model to select from a “market basket” of

price/condition pairs {ui, αi} , i = 1...n. In these cases, the remanufacturer can solve our

model for each pair in turn and choose the pair(s) that would enable it to meet demand at

the lowest total cost.

When condition is a continuous random variable as assumed in previous sections, items

are ordered by condition during inspection. In the dichotomous condition context, the sorting

process is more straightforward – items are simply separated into two categories, low cost

and high cost. The remanufacturer will process low cost items first. If demand cannot be met
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Table 2: Additional Notation for Discrete Condition
α expected proportion of used items in the low cost category
N actual number of used items in the low cost category
c1 cost to remanufacture low cost items
c2 cost to remanufacture high cost items
s̃ incremental remanufacturing cost of a high cost item

using only low cost items, then high cost items are processed until demand has been fulfilled.

We assume that low cost and high cost items have known, fixed costs to remanufacture of

c1 and c2, respectively. Let s̃ = c2 − c1, that is, s̃ is the additional unit remanufacturing cost

incurred for those units of demand not met using low cost items. The additional notation

required for this discrete condition model is summarized in Table 2.

If N is the number of low cost items in an acquired batch of size Q, then we have the

following expected cost expression when N is a binomially distributed random variable:

f (Q) = uQ + (Q − D)s + c1D + s̃
D−1
∑

N=0

(

Q

N

)

αN (1 − α)Q−N [D − N ] (8)

Below we show that the expression (8) is “discrete convex,” i.e. first differences of the

function are monotonically increasing in the decision variable (Barad and Braha 1996), and

therefore a unique global minimizer exists for (8).

Proposition 3 The cost function (8) is discrete convex in Q.

Proof: See Appendix

Given Proposition 3, the unique minimizer of (8) defines Q∗ for any two-condition re-

manufacturing problem.

We return to the cell phone remanufacturing example to demonstrate how (8) can be

used in practice. Disguised cost data for a CertiCell phone whose condition variability can

be captured by two categories is as follows: u = 3.5, s = 0, α = 0.9, c1 = 10, c2 = 16. In this

case, the acquisition quantity that would enable the remanufacturer to meet the demand

for 500 remanufactured phones at the minimal expected cost can be found by solving (8)

for these parameters, giving Q∗ = 552. Clearly, the acquisition quantity will decrease as α

increases, as a higher α enables the same expected number of low cost items to be obtained

from a smaller lot.

Next, we note that the case where Q∗ = D is defined by a simple condition:
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Observation 3 When condition is dichotomous, Q∗ = D whenever u ≥ αs̃ − (1 − α) s.

Observation 3 can be confirmed by noting that the expected benefit from acquiring unit

D + 1 is less than the acquisition plus expected scrap cost whenever αs̃ ≤ u + (1 − α) s.

We can also define a simple inflection point, D
α
, in the optimal solution, as follows:

Proposition 4 For sufficiently large D, if u < αs̃ and s = 0, then D
α

is a bound on the

optimal solution as follows: whenever u ≤ αs̃
2
, D

α
is a lower bound on Q∗; whenever u > αs̃

2
,

D
α

is an upper bound on Q∗

Proof: See Appendix

Since first differences of the cost function are given by ∆f (Q) = u + s− s̃α + s̃α (Ψ (Q))

(See proof of Proposition 3), we know that if the remanufacturing costs of both condition

categories change by the same amount (i.e. s̃ is constant), Q∗ is invariant. In terms of

remanufacturing costs, only a change in s̃ affects Q∗. In addition, the value of αs̃ relative to

the acquisition cost u drives a simple optimality condition for Q∗ (αs̃ = u, from Observation

3 without scrapping costs) as well as an inflection point in the optimal solution (αs̃ = 2u,

from Proposition 4). Figure 2 illustrates the impact of αs̃ on Q∗.

As seen in Table 3, the primary effects of s̃ and α on the optimal solution are defined

by Observation 3: Q∗ simply equals D whenever the inequality in that observation holds.

When the inequality in Observation 3 does not hold, the effects of changes in these two

parameters are quite different: Q∗ is very sensitive to changes in α and only weakly affected

by changes in s̃. This can be explained by the fact that, in these cases, remanufacturing

of high cost items is sufficiently expensive that these items will be used primarily as safety

stock against a shortfall of low cost items. Since very few high cost items are expected to

be remanufactured, their exact cost premium (s̃) has a minor impact. For example, when

α = 0.7, a doubling of s̃ from 6 to 12 would change Q∗ by less than 3% (from 698 to 718). On

the other hand, when s̃ = 12, a doubling of α from 0.3 to 0.6 would reduce Q∗ significantly

(from 1552 to 835). Essentially, roughly D
α

used items will be acquired, so Q∗ is roughly

inversely proportional to changes in α—e.g., if α doubles Q∗ is reduced by about half. Note

that Proposition 4 can also be confirmed to hold in the numerical analysis presented in Table

3. Specifically, αQ∗ will be greater than D whenever acquisition cost is sufficiently small

(u ≤ αs̃
2

), a situation that can be thought of as acquiring a positive safety stock of high cost

items. Otherwise, αQ∗ will be less than D, i.e. a negative safety stock is acquired.
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Figure 2: Q∗ for various αs̃ (D=500, u=3.5, s=0, α=0.5)

5. Conclusions

In this paper, we analyze the acquisition lot sizing problem with condition uncertainty in

remanufacturing. We present results when condition variability is described by a continuum

as well as by two discrete categories of remanufacturable used items. For continuous condi-

tion, we consider remanufacturing costs that are linear and nonlinear functions of condition.

In each case, we show that a unique optimal acquisition quantity exists and can be found

by a simple computation. We also find that the model with linear costs has a closed form

solution that is very similar to that of a simple model that ignores condition uncertainty.

From this closed form result we observe that the optimal acquisition quantity increases with

the square root of the degree of condition variability. In addition to being of interest to

remanufacturing researchers and practitioners, our results extend the knowledge of lot sizing

with defects to the remanufacturing context, where each unit of raw material has its own

(uncertain) processing cost.

There are several ways in which this research stream can be extended. While the assump-

tion of uniformly distributed condition allowed us to capture significant condition variability

while maintaining tractability, other distributions could also be examined. While optimal

solutions may be difficult to find in these cases, methods such as simulation would enable
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Table 3: Q∗ for various α, s̃ (D = 500, u = 3.5, s=0)

s̃

α 6 8 10 12 14 16 18 20
0.2 500 500 500 500 500 500 2316 2388
0.3 500 500 500 1552 1608 1630 1644 1654
0.4 500 500 1202 1224 1237 1245 1252 1257
0.5 500 965 984 994 1000 1005 1009 1013
0.6 790 820 829 835 839 842 845 847
0.7 698 709 715 718 721 723 725 727
0.8 618 624 627 630 632 633 634 635

the investigation of a broad set of possible condition distributions and remanufacturing cost

functions in terms of their impact on acquisition policies. Another interesting extension

of this work would be to incorporate the potential for inaccurate sorting, as described by

Zikopoulos and Tagaras (2007). Finally, the model could be extended to a multi-period

setting, which might be appropriate for some remanufactured items with longer life cycles.

Appendix: Proofs

Proof of Proposition 1

Moving constant terms outside of the integral in (4) gives the following:

f (Q) = uQ + s (Q − D) +
D
∑

k=1



a + cQ

(

Q − 1
k − 1

) 1
∫

0

(λ) λk−1 (1 − λ)Q−k
dλ



 (9)

To evaluate (9) we use the following standard integral form, which can be verified by differ-

entiation:

∫

λm (a + bλ)n
dλ =

λm+1 (a + bλ)n

m + n + 1
+

an

m + n + 1

∫

λm (a + bλ)n−1
dλ (10)

Using (10), the integral in (9) can be expanded and evaluated as:

1
∫

0

λk (1 − λ)Q−k
dλ =

λk+1 (1 − λ)Q−k

Q + 1

∣

∣

∣

∣

∣

1

0

+
Q − k

Q + 1

1
∫

0

λk (1 − λ)Q−k−1
dλ

which reduces to:

1
∫

0

λk (1 − λ)Q−k
dλ =

Q − k

Q + 1

1
∫

0

λk (1 − λ)Q−k−1
dλ
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since the first term vanishes. Repeated application of (10) until the exponent of (1 − λ) is

reduced to zero yields:

(Q − k) (Q − k − 1) ... (1)

(Q + 1) (Q) ... (k + 2)

1
∫

0

λkdλ =

(

(Q − k)! (k + 1)!

(Q + 1)!

)

(

1

k + 1

)

Then

Q

(

Q − 1
k − 1

) 1
∫

0

λk (1 − λ)Q−k
dλ = Q

(

Q − 1
k − 1

)(

(Q − k)! (k + 1)!

(Q + 1)!

)

(

1

k + 1

)

=
k

Q + 1

Substituting back into (9), we have:

f (Q) = uQ + s (Q − D) +
D
∑

k=1

[

a +
ck

Q + 1

]

=uQ + s (Q − D) + aD + c
(D) (D + 1)

2 (Q + 1)
(11)

which is convex in Q. The first derivative of (11) with respect to Q is:

u + s − c
(D) (D + 1)

2 (Q + 1)2

and the optimal Q is:

Q∗ =

√

√

√

√

cD (D + 1)

2 (u + s)
− 1 (12)

Since Q must be integer, (12) is rounded to the nearest integer by adding 0.5 and taking the

floor function:

Q∗ =









√

√

√

√

cD (D + 1)

2 (u + s)
− 0.5









For completeness, we add our assumption that Q ≥ D.

Proof of Proposition 2

Using the same approach as in the proof of Proposition 1, we find that the expected reman-

ufacturing cost for D items when Q are acquired (Q ≥ D) is:

aD + c
D
∑

k=1

(k + k2)

(Q + 1) (Q + 2)
(13)

We can remove the summation from (13) by substituting an equivalent expression for the

finite series in the numerator, giving the following:
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aD +
cD (D + 1) (2D + 4)

6 (Q + 1) (Q + 2)

Total expected cost is therefore:

f (Q) = uQ + s (Q − D) + aD +
cD (D + 1) (2D + 4)

6 (Q + 1) (Q + 2)

which is convex in Q and has the following derivative:

f ′ (Q) = u + s − cD (D + 1) (2D + 4) (2Q + 3)

6 (Q + 1)2 (Q + 2)2 (14)

Setting (14) equal to zero yields:

(Q + 1)2 (Q + 2)2

2Q + 3
=

cD (D + 1) (D + 2)

3 (u + s)

Proof of Proposition 3

Note: this proof follows the approach used by Barad and Braha (1996).

For any Q, we have the following function for f(Q + 1):

f (Q + 1) = u(Q + 1) + (Q + 1 − D)s + c1D + s̃
D−1
∑

N=0

(

Q + 1
N

)

αN (1 − α)Q+1−N [D − N ]

or, simplifying the notation:

f (Q + 1) = u(Q + 1) + (Q + 1 − D)s + c1D + s̃
∑

N<D

[D − N ]p [N |Q + 1] (15)

From probability theory we have:

p (N |Q + 1)) = αp (N − 1|Q) + (1 − α) p (N |Q) (16)

Subtracting (8) from (15) and using (16) gives us the following expression for the first

difference:

∆f (Q) = u + s + s̃α
∑

N<D

[D − N ] {p [N − 1|Q] − p [N |Q]}

which simplifies to:

∆f (Q) = u + s − s̃αp (N < D|Q)
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Letting Ψ (Q) = p (N ≥ D|Q):

∆f (Q) = u + s − s̃α + s̃α (Ψ (Q)) (17)

Since Ψ(Q) is strictly increasing for all Q ≥ D, (17) is a monotonically increasing function of

Q. We conclude the proof by noting that, since lim
Q→∞

∆f (Q) = u + s > 0, (17) has a unique

minimum.

Proof of Proposition 4

Assume that D
α

items are acquired. Note that acquiring one fewer item reduces costs when

the following condition holds:

u > s̃

[

D−1
∑

N=0

(

Q − 1
N

)

αN (1 − α)Q+1−N (D − N) −
D−1
∑

N=0

(

Q

N

)

αN (1 − α)Q+1−N (D − N)

]

(18)

That is, when the unit acquisition cost saved exceeds the expected increase in costs.

When (18) does not hold, acquiring one fewer item does not reduce costs. From probability

theory we have:

p (N |Q) = αp (N − 1|Q − 1) + (1 − α) p (N |Q − 1) (19)

Simplifying (18) using (19):

u > s̃α
∑

N<D

(D − N) [p (N − 1|Q − 1) − p (N |Q − 1)] (20)

which simplifies to:

u > s̃αp (N < D|Q − 1) (21)

Note that, for sufficiently large D and Q, the expected number of low cost items will be

symmetrically distributed with mean αQ. Thus, when Q = D
α
, the likelihood of a shortage

of low cost items is 0.5. Given (21), we know that p (N < D|Q − 1) > p (N < D|Q) = 0.5,

so p (N < D|Q − 1) = 0.5 + ǫ and (21) can be written u > s̃α (0.5 + ǫ). Therefore, when

u ≤ αs̃
2

, then u ≤ αs̃
2

< s̃αp (N < D|Q − 1) and (21) does not hold, so decreasing Q will

not reduce costs. In addition, for sufficiently large D and Q, ǫ will be sufficiently small such

18



that u > αs̃
2

implies u > s̃αp (N < D|Q − 1), and decreasing Q by one unit reduces expected

cost.
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